Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Real-Time Resource Allocation for Wireless Powered Multiuser Mobile Edge Computing With Energy and Task Causality (2004.14319v2)

Published 29 Apr 2020 in cs.IT, eess.SP, and math.IT

Abstract: This paper considers a wireless powered multiuser mobile edge computing (MEC) system, in which a multi-antenna hybrid access point (AP) wirelessly charges multiple users, and each user relies on the harvested energy to execute computation tasks. We jointly optimize the energy beamforming and remote task execution at the AP, as well as the local computing and task offloading, aiming to minimize the total system energy consumption over a finite time horizon, subject to causality constraints for both energy harvesting and task arrival at the users. In particular, we consider a practical scenario with casual task state information (TSI) and channel state information (CSI), i.e., only the current and previous TSI and CSI are available, but the future TSI and CSI can only be predicted subject to certain errors. To solve this real-time resource allocation problem, we propose an offline-optimization inspired online design approach. First, we consider the offline optimization case by assuming that the TSI and CSI are perfectly known a-priori. In this case, the energy minimization problem corresponds to a convex problem, for which the semi-closed-form optimal solution is obtained via the Lagrange duality method. Next, inspired by the optimal offline solution, we propose a sliding-window based online resource allocation design in practical cases by integrating with the sequential optimization. Finally, numerical results show that the proposed joint wireless powered MEC designs significantly improve the system's energy efficiency, as compared with the benchmark schemes that consider a sliding window of size one or without such joint optimization.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.