Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

BERT Fine-tuning For Arabic Text Summarization (2004.14135v1)

Published 29 Mar 2020 in cs.CL and cs.LG

Abstract: Fine-tuning a pretrained BERT model is the state of the art method for extractive/abstractive text summarization, in this paper we showcase how this fine-tuning method can be applied to the Arabic language to both construct the first documented model for abstractive Arabic text summarization and show its performance in Arabic extractive summarization. Our model works with multilingual BERT (as Arabic language does not have a pretrained BERT of its own). We show its performance in English corpus first before applying it to Arabic corpora in both extractive and abstractive tasks.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.