Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combining Word Embeddings and N-grams for Unsupervised Document Summarization (2004.14119v1)

Published 25 Apr 2020 in cs.CL, cs.LG, and stat.ML

Abstract: Graph-based extractive document summarization relies on the quality of the sentence similarity graph. Bag-of-words or tf-idf based sentence similarity uses exact word matching, but fails to measure the semantic similarity between individual words or to consider the semantic structure of sentences. In order to improve the similarity measure between sentences, we employ off-the-shelf deep embedding features and tf-idf features, and introduce a new text similarity metric. An improved sentence similarity graph is built and used in a submodular objective function for extractive summarization, which consists of a weighted coverage term and a diversity term. A Transformer based compression model is developed for sentence compression to aid in document summarization. Our summarization approach is extractive and unsupervised. Experiments demonstrate that our approach can outperform the tf-idf based approach and achieve state-of-the-art performance on the DUC04 dataset, and comparable performance to the fully supervised learning methods on the CNN/DM and NYT datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.