Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Scheduled DropHead: A Regularization Method for Transformer Models (2004.13342v2)

Published 28 Apr 2020 in cs.CL and cs.LG

Abstract: In this paper, we introduce DropHead, a structured dropout method specifically designed for regularizing the multi-head attention mechanism, which is a key component of transformer, a state-of-the-art model for various NLP tasks. In contrast to the conventional dropout mechanisms which randomly drop units or connections, the proposed DropHead is a structured dropout method. It drops entire attention-heads during training and It prevents the multi-head attention model from being dominated by a small portion of attention heads while also reduces the risk of overfitting the training data, thus making use of the multi-head attention mechanism more efficiently. Motivated by recent studies about the learning dynamic of the multi-head attention mechanism, we propose a specific dropout rate schedule to adaptively adjust the dropout rate of DropHead and achieve better regularization effect. Experimental results on both machine translation and text classification benchmark datasets demonstrate the effectiveness of the proposed approach.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.