Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bounds for list-decoding and list-recovery of random linear codes (2004.13247v2)

Published 28 Apr 2020 in cs.IT, math.IT, and math.PR

Abstract: A family of error-correcting codes is list-decodable from error fraction $p$ if, for every code in the family, the number of codewords in any Hamming ball of fractional radius $p$ is less than some integer $L$ that is independent of the code length. It is said to be list-recoverable for input list size $\ell$ if for every sufficiently large subset of codewords (of size $L$ or more), there is a coordinate where the codewords take more than $\ell$ values. The parameter $L$ is said to be the "list size" in either case. The capacity, i.e., the largest possible rate for these notions as the list size $L \to \infty$, is known to be $1-h_q(p)$ for list-decoding, and $1-\log_q \ell$ for list-recovery, where $q$ is the alphabet size of the code family. In this work, we study the list size of random linear codes for both list-decoding and list-recovery as the rate approaches capacity. We show the following claims hold with high probability over the choice of the code (below, $\epsilon > 0$ is the gap to capacity). (1) A random linear code of rate $1 - \log_q(\ell) - \epsilon$ requires list size $L \ge \ell{\Omega(1/\epsilon)}$ for list-recovery from input list size $\ell$. This is surprisingly in contrast to completely random codes, where $L = O(\ell/\epsilon)$ suffices w.h.p. (2) A random linear code of rate $1 - h_q(p) - \epsilon$ requires list size $L \ge \lfloor h_q(p)/\epsilon+0.99 \rfloor$ for list-decoding from error fraction $p$, when $\epsilon$ is sufficiently small. (3) A random binary linear code of rate $1 - h_2(p) - \epsilon$ is list-decodable from average error fraction $p$ with list size with $L \leq \lfloor h_2(p)/\epsilon \rfloor + 2$. The second and third results together precisely pin down the list sizes for binary random linear codes for both list-decoding and average-radius list-decoding to three possible values.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.