Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Bridge-Depth Characterizes which Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel (2004.12865v2)

Published 27 Apr 2020 in cs.DS, cs.CC, and math.CO

Abstract: We study the kernelization complexity of structural parameterizations of the Vertex Cover problem. Here, the goal is to find a polynomial-time preprocessing algorithm that can reduce any instance $(G,k)$ of the Vertex Cover problem to an equivalent one, whose size is polynomial in the size of a pre-determined complexity parameter of $G$. A long line of previous research deals with parameterizations based on the number of vertex deletions needed to reduce $G$ to a member of a simple graph class $\mathcal{F}$, such as forests, graphs of bounded tree-depth, and graphs of maximum degree two. We set out to find the most general graph classes $\mathcal{F}$ for which Vertex Cover parameterized by the vertex-deletion distance of the input graph to $\mathcal{F}$, admits a polynomial kernelization. We give a complete characterization of the minor-closed graph families $\mathcal{F}$ for which such a kernelization exists. We introduce a new graph parameter called bridge-depth, and prove that a polynomial kernelization exists if and only if $\mathcal{F}$ has bounded bridge-depth. The proof is based on an interesting connection between bridge-depth and the size of minimal blocking sets in graphs, which are vertex sets whose removal decreases the independence number.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.