Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 209 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximate Turing Kernelization for Problems Parameterized by Treewidth (2004.12683v1)

Published 27 Apr 2020 in cs.DS and cs.CC

Abstract: We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to approximate Turing kernelization. An $\alpha$-approximate Turing kernel for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs $c$-approximate solutions in $O(1)$ time, obtains an $(\alpha \cdot c)$-approximate solution to the considered problem, using calls to the oracle of size at most $f(k)$ for some function $f$ that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth $\ell$ has a $(1+\varepsilon)$-approximate Turing kernel with $O(\frac{\ell2}{\varepsilon})$ vertices, answering an open question posed by Lokshtanov et al. [STOC 2017]. Furthermore, we give $(1+\varepsilon)$-approximate Turing kernels for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover, by showing that all graph problems that we will call "friendly" admit $(1+\varepsilon)$-approximate Turing kernels of polynomial size when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-Disjoint $H$-packing for connected graphs $H$, Clique Cover, Feedback Vertex Set and Edge Dominating Set.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.