Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning (2004.12571v5)

Published 27 Apr 2020 in cs.CR and cs.LG

Abstract: Federated learning (FL) is a decentralized model training framework that aims to merge isolated data islands while maintaining data privacy. However, recent studies have revealed that Generative Adversarial Network (GAN) based attacks can be employed in FL to learn the distribution of private datasets and reconstruct recognizable images. In this paper, we exploit defenses against GAN-based attacks in FL and propose a framework, Anti-GAN, to prevent attackers from learning the real distribution of the victim's data. The core idea of Anti-GAN is to manipulate the visual features of private training images to make them indistinguishable to human eyes even restored by attackers. Specifically, Anti-GAN projects the private dataset onto a GAN's generator and combines the generated fake images with the actual images to create the training dataset, which is then used for federated model training. The experimental results demonstrate that Anti-GAN is effective in preventing attackers from learning the distribution of private images while causing minimal harm to the accuracy of the federated model.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com