Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

All you need is a second look: Towards Tighter Arbitrary shape text detection (2004.12436v1)

Published 26 Apr 2020 in cs.CV

Abstract: Deep learning-based scene text detection methods have progressed substantially over the past years. However, there remain several problems to be solved. Generally, long curve text instances tend to be fragmented because of the limited receptive field size of CNN. Besides, simple representations using rectangle or quadrangle bounding boxes fall short when dealing with more challenging arbitrary-shaped texts. In addition, the scale of text instances varies greatly which leads to the difficulty of accurate prediction through a single segmentation network. To address these problems, we innovatively propose a two-stage segmentation based arbitrary text detector named \textit{NASK} (\textbf{N}eed \textbf{A} \textbf{S}econd loo\textbf{K}). Specifically, \textit{NASK} consists of a Text Instance Segmentation network namely \textit{TIS} ((1{st}) stage), a Text RoI Pooling module and a Fiducial pOint eXpression module termed as \textit{FOX} ((2{nd}) stage). Firstly, \textit{TIS} conducts instance segmentation to obtain rectangle text proposals with a proposed Group Spatial and Channel Attention module (\textit{GSCA}) to augment the feature expression. Then, Text RoI Pooling transforms these rectangles to the fixed size. Finally, \textit{FOX} is introduced to reconstruct text instances with a more tighter representation using the predicted geometrical attributes including text center line, text line orientation, character scale and character orientation. Experimental results on two public benchmarks including \textit{Total-Text} and \textit{SCUT-CTW1500} have demonstrated that the proposed \textit{NASK} achieves state-of-the-art results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)