Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dual Learning for Semi-Supervised Natural Language Understanding (2004.12299v4)

Published 26 Apr 2020 in cs.CL and cs.LG

Abstract: Natural language understanding (NLU) converts sentences into structured semantic forms. The paucity of annotated training samples is still a fundamental challenge of NLU. To solve this data sparsity problem, previous work based on semi-supervised learning mainly focuses on exploiting unlabeled sentences. In this work, we introduce a dual task of NLU, semantic-to-sentence generation (SSG), and propose a new framework for semi-supervised NLU with the corresponding dual model. The framework is composed of dual pseudo-labeling and dual learning method, which enables an NLU model to make full use of data (labeled and unlabeled) through a closed-loop of the primal and dual tasks. By incorporating the dual task, the framework can exploit pure semantic forms as well as unlabeled sentences, and further improve the NLU and SSG models iteratively in the closed-loop. The proposed approaches are evaluated on two public datasets (ATIS and SNIPS). Experiments in the semi-supervised setting show that our methods can outperform various baselines significantly, and extensive ablation studies are conducted to verify the effectiveness of our framework. Finally, our method can also achieve the state-of-the-art performance on the two datasets in the supervised setting. Our code is available at \url{https://github.com/rhythmcao/slu-dual-learning.git}.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)