Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Depthwise Separable Convolutional ResNet with Squeeze-and-Excitation Blocks for Small-footprint Keyword Spotting (2004.12200v2)

Published 25 Apr 2020 in cs.SD and eess.AS

Abstract: One difficult problem of keyword spotting is how to miniaturize its memory footprint while maintain a high precision. Although convolutional neural networks have shown to be effective to the small-footprint keyword spotting problem, they still need hundreds of thousands of parameters to achieve good performance. In this paper, we propose an efficient model based on depthwise separable convolution layers and squeeze-and-excitation blocks. Specifically, we replace the standard convolution by the depthwise separable convolution, which reduces the number of the parameters of the standard convolution without significant performance degradation. We further improve the performance of the depthwise separable convolution by reweighting the output feature maps of the first convolution layer with a so-called squeeze-and-excitation block. We compared the proposed method with five representative models on two experimental settings of the Google Speech Commands dataset. Experimental results show that the proposed method achieves the state-of-the-art performance. For example, it achieves a classification error rate of 3.29% with a number of parameters of 72K in the first experiment, which significantly outperforms the comparison methods given a similar model size. It achieves an error rate of 3.97% with a number of parameters of 10K, which is also slightly better than the state-of-the-art comparison method given a similar model size.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.