Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Quantifying the Contextualization of Word Representations with Semantic Class Probing (2004.12198v2)

Published 25 Apr 2020 in cs.CL

Abstract: Pretrained LLMs have achieved a new state of the art on many NLP tasks, but there are still many open questions about how and why they work so well. We investigate the contextualization of words in BERT. We quantify the amount of contextualization, i.e., how well words are interpreted in context, by studying the extent to which semantic classes of a word can be inferred from its contextualized embeddings. Quantifying contextualization helps in understanding and utilizing pretrained LLMs. We show that top layer representations achieve high accuracy inferring semantic classes; that the strongest contextualization effects occur in the lower layers; that local context is mostly sufficient for semantic class inference; and that top layer representations are more task-specific after finetuning while lower layer representations are more transferable. Finetuning uncovers task related features, but pretrained knowledge is still largely preserved.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.