Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for Multi-Agent Power Control in Heterogeneous Networks (2004.12095v2)

Published 25 Apr 2020 in cs.IT, eess.SP, and math.IT

Abstract: We consider a typical heterogeneous network (HetNet), in which multiple access points (APs) are deployed to serve users by reusing the same spectrum band. Since different APs and users may cause severe interference to each other, advanced power control techniques are needed to manage the interference and enhance the sum-rate of the whole network. Conventional power control techniques first collect instantaneous global channel state information (CSI) and then calculate sub-optimal solutions. Nevertheless, it is challenging to collect instantaneous global CSI in the HetNet, in which global CSI typically changes fast. In this paper, we exploit deep reinforcement learning (DRL) to design a multi-agent power control algorithm in the HetNet. To be specific, by treating each AP as an agent with a local deep neural network (DNN), we propose a multiple-actor-shared-critic (MASC) method to train the local DNNs separately in an online trial-and-error manner. With the proposed algorithm, each AP can independently use the local DNN to control the transmit power with only local observations. Simulations results show that the proposed algorithm outperforms the conventional power control algorithms in terms of both the converged average sum-rate and the computational complexity.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.