Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Design and convergence analysis of numerical methods for stochastic evolution equations with Leray-Lions operator (2004.12047v2)

Published 25 Apr 2020 in math.NA and cs.NA

Abstract: *The gradient discretisation method (GDM) is a generic framework, covering many classical methods (Finite Elements, Finite Volumes, Discontinuous Galerkin, etc.), for designing and analysing numerical schemes for diffusion models. In this paper, we study the GDM for a general stochastic evolution problem based on a Leray--Lions type operator. The problem contains the stochastic $p$-Laplace equation as a particular case. The convergence of the Gradient Scheme (GS) solutions is proved by using Discrete Functional Analysis techniques, Skorohod theorem and the Kolmogorov test. In particular, we provide an independent proof of the existence of weak martingale solutions for the problem. In this way, we lay foundations and provide techniques for proving convergence of the GS approximating stochastic partial differential equations.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube