Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Design and convergence analysis of numerical methods for stochastic evolution equations with Leray-Lions operator (2004.12047v2)

Published 25 Apr 2020 in math.NA and cs.NA

Abstract: *The gradient discretisation method (GDM) is a generic framework, covering many classical methods (Finite Elements, Finite Volumes, Discontinuous Galerkin, etc.), for designing and analysing numerical schemes for diffusion models. In this paper, we study the GDM for a general stochastic evolution problem based on a Leray--Lions type operator. The problem contains the stochastic $p$-Laplace equation as a particular case. The convergence of the Gradient Scheme (GS) solutions is proved by using Discrete Functional Analysis techniques, Skorohod theorem and the Kolmogorov test. In particular, we provide an independent proof of the existence of weak martingale solutions for the problem. In this way, we lay foundations and provide techniques for proving convergence of the GS approximating stochastic partial differential equations.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.