Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

StRDAN: Synthetic-to-Real Domain Adaptation Network for Vehicle Re-Identification (2004.12032v2)

Published 25 Apr 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Vehicle re-identification aims to obtain the same vehicles from vehicle images. This is challenging but essential for analyzing and predicting traffic flow in the city. Although deep learning methods have achieved enormous progress for this task, their large data requirement is a critical shortcoming. Therefore, we propose a synthetic-to-real domain adaptation network (StRDAN) framework, which can be trained with inexpensive large-scale synthetic and real data to improve performance. The StRDAN training method combines domain adaptation and semi-supervised learning methods and their associated losses. StRDAN offers significant improvement over the baseline model, which can only be trained using real data, for VeRi and CityFlow-ReID datasets, achieving 3.1% and 12.9% improved mean average precision, respectively.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.