Papers
Topics
Authors
Recent
2000 character limit reached

The number of almost perfect nonlinear functions grows exponentially (2004.11896v2)

Published 23 Apr 2020 in math.CO, cs.IT, and math.IT

Abstract: Almost perfect nonlinear (APN) functions play an important role in the design of block ciphers as they offer the strongest resistance against differential cryptanalysis. Despite more than 25 years of research, only a limited number of APN functions are known. In this paper, we show that a recent construction by Taniguchi provides at least $\frac{\varphi(m)}{2}\left\lceil \frac{2m+1}{3m} \right\rceil$ inequivalent APN functions on the finite field with ${2{2m}}$ elements, where $\varphi$ denotes Euler's totient function. This is a great improvement of previous results: for even $m$, the best known lower bound has been $\frac{\varphi(m)}{2}\left(\lfloor \frac{m}{4}\rfloor +1\right)$, for odd $m$, there has been no such lower bound at all. Moreover, we determine the automorphism group of Taniguchi's APN functions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.