Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Facial Expression Recognition with Deep Learning (2004.11823v1)

Published 8 Apr 2020 in cs.CV

Abstract: One of the most universal ways that people communicate is through facial expressions. In this paper, we take a deep dive, implementing multiple deep learning models for facial expression recognition (FER). Our goals are twofold: we aim not only to maximize accuracy, but also to apply our results to the real-world. By leveraging numerous techniques from recent research, we demonstrate a state-of-the-art 75.8% accuracy on the FER2013 test set, outperforming all existing publications. Additionally, we showcase a mobile web app which runs our FER models on-device in real time.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.