Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ST$^2$: Small-data Text Style Transfer via Multi-task Meta-Learning (2004.11742v1)

Published 24 Apr 2020 in cs.CL

Abstract: Text style transfer aims to paraphrase a sentence in one style into another style while preserving content. Due to lack of parallel training data, state-of-art methods are unsupervised and rely on large datasets that share content. Furthermore, existing methods have been applied on very limited categories of styles such as positive/negative and formal/informal. In this work, we develop a meta-learning framework to transfer between any kind of text styles, including personal writing styles that are more fine-grained, share less content and have much smaller training data. While state-of-art models fail in the few-shot style transfer task, our framework effectively utilizes information from other styles to improve both language fluency and style transfer accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)