Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improving Recommendation Diversity by Highlighting the ExTrA Fabricated Experts (2004.11662v1)

Published 24 Apr 2020 in cs.SI and cs.IR

Abstract: Nowadays, recommender systems (RSes) are becoming increasingly important to individual users and business marketing, especially in the online e-commerce scenarios. However, while the majority of recommendation algorithms proposed in the literature have focused their efforts on improving prediction accuracy, other important aspects of recommendation quality, such as diversity of recommendations, have been more or less overlooked. In the latest decade, recommendation diversity has drawn more research attention, especially in the models based on user-item bipartite networks. In this paper, we introduce a family of approaches to extract fabricated experts from users in RSes, named as the Expert Tracking Approaches (ExTrA for short), and explore the capability of these fabricated experts in improving the recommendation diversity, by highlighting them in a well-known bipartite network-based method, called the Mass Diffusion (MD for short) model. These ExTrA-based models are compared with two state-of-the-art MD-improved models HHP and BHC, with respect to recommendation accuracy and diversity. Comprehensive empirical results on three real-world datasets MovieLens, Netflix and RYM show that, our proposed ExTrA-based models can achieve significant diversity gain while maintain comparable level of recommendation accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.