Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust testing of low-dimensional functions (2004.11642v2)

Published 24 Apr 2020 in cs.CC, cs.DS, and cs.LG

Abstract: A natural problem in high-dimensional inference is to decide if a classifier $f:\mathbb{R}n \rightarrow {-1,1}$ depends on a small number of linear directions of its input data. Call a function $g: \mathbb{R}n \rightarrow {-1,1}$, a linear $k$-junta if it is completely determined by some $k$-dimensional subspace of the input space. A recent work of the authors showed that linear $k$-juntas are testable. Thus there exists an algorithm to distinguish between: 1. $f: \mathbb{R}n \rightarrow {-1,1}$ which is a linear $k$-junta with surface area $s$, 2. $f$ is $\epsilon$-far from any linear $k$-junta with surface area $(1+\epsilon)s$, where the query complexity of the algorithm is independent of the ambient dimension $n$. Following the surge of interest in noise-tolerant property testing, in this paper we prove a noise-tolerant (or robust) version of this result. Namely, we give an algorithm which given any $c>0$, $\epsilon>0$, distinguishes between 1. $f: \mathbb{R}n \rightarrow {-1,1}$ has correlation at least $c$ with some linear $k$-junta with surface area $s$. 2. $f$ has correlation at most $c-\epsilon$ with any linear $k$-junta with surface area at most $s$. The query complexity of our tester is $k{\mathsf{poly}(s/\epsilon)}$. Using our techniques, we also obtain a fully noise tolerant tester with the same query complexity for any class $\mathcal{C}$ of linear $k$-juntas with surface area bounded by $s$. As a consequence, we obtain a fully noise tolerant tester with query complexity $k{O(\mathsf{poly}(\log k/\epsilon))}$ for the class of intersection of $k$-halfspaces (for constant $k$) over the Gaussian space. Our query complexity is independent of the ambient dimension $n$. Previously, no non-trivial noise tolerant testers were known even for a single halfspace.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.