Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Contextualized Graph Attention Network for Recommendation with Item Knowledge Graph (2004.11529v1)

Published 24 Apr 2020 in cs.IR

Abstract: Graph neural networks (GNN) have recently been applied to exploit knowledge graph (KG) for recommendation. Existing GNN-based methods explicitly model the dependency between an entity and its local graph context in KG (i.e., the set of its first-order neighbors), but may not be effective in capturing its non-local graph context (i.e., the set of most related high-order neighbors). In this paper, we propose a novel recommendation framework, named Contextualized Graph Attention Network (CGAT), which can explicitly exploit both local and non-local graph context information of an entity in KG. Specifically, CGAT captures the local context information by a user-specific graph attention mechanism, considering a user's personalized preferences on entities. Moreover, CGAT employs a biased random walk sampling process to extract the non-local context of an entity, and utilizes a Recurrent Neural Network (RNN) to model the dependency between the entity and its non-local contextual entities. To capture the user's personalized preferences on items, an item-specific attention mechanism is also developed to model the dependency between a target item and the contextual items extracted from the user's historical behaviors. Experimental results on real datasets demonstrate the effectiveness of CGAT, compared with state-of-the-art KG-based recommendation methods.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.