Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

End-to-end speech-to-dialog-act recognition (2004.11419v2)

Published 23 Apr 2020 in cs.SD, cs.CL, and eess.AS

Abstract: Spoken language understanding, which extracts intents and/or semantic concepts in utterances, is conventionally formulated as a post-processing of automatic speech recognition. It is usually trained with oracle transcripts, but needs to deal with errors by ASR. Moreover, there are acoustic features which are related with intents but not represented with the transcripts. In this paper, we present an end-to-end model which directly converts speech into dialog acts without the deterministic transcription process. In the proposed model, the dialog act recognition network is conjunct with an acoustic-to-word ASR model at its latent layer before the softmax layer, which provides a distributed representation of word-level ASR decoding information. Then, the entire network is fine-tuned in an end-to-end manner. This allows for stable training as well as robustness against ASR errors. The model is further extended to conduct DA segmentation jointly. Evaluations with the Switchboard corpus demonstrate that the proposed method significantly improves dialog act recognition accuracy from the conventional pipeline framework.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.