Papers
Topics
Authors
Recent
2000 character limit reached

Tip the Balance: Improving Exploration of Balanced Crossover Operators by Adaptive Bias (2004.11331v1)

Published 23 Apr 2020 in cs.NE

Abstract: The use of balanced crossover operators in Genetic Algorithms (GA) ensures that the binary strings generated as offsprings have the same Hamming weight of the parents, a constraint which is sought in certain discrete optimization problems. Although this method reduces the size of the search space, the resulting fitness landscape often becomes more difficult for the GA to explore and to discover optimal solutions. This issue has been studied in this paper by applying an adaptive bias strategy to a counter-based crossover operator that introduces unbalancedness in the offspring with a certain probability, which is decreased throughout the evolutionary process. Experiments show that improving the exploration of the search space with this adaptive bias strategy is beneficial for the GA performances in terms of the number of optimal solutions found for the balanced nonlinear Boolean functions problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.