Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Supervised Domain Adaptation: A Graph Embedding Perspective and a Rectified Experimental Protocol (2004.11262v4)

Published 23 Apr 2020 in cs.LG and stat.ML

Abstract: Domain Adaptation is the process of alleviating distribution gaps between data from different domains. In this paper, we show that Domain Adaptation methods using pair-wise relationships between source and target domain data can be formulated as a Graph Embedding in which the domain labels are incorporated into the structure of the intrinsic and penalty graphs. Specifically, we analyse the loss functions of three existing state-of-the-art Supervised Domain Adaptation methods and demonstrate that they perform Graph Embedding. Moreover, we highlight some generalisation and reproducibility issues related to the experimental setup commonly used to demonstrate the few-shot learning capabilities of these methods. To assess and compare Supervised Domain Adaptation methods accurately, we propose a rectified evaluation protocol, and report updated benchmarks on the standard datasets Office31 (Amazon, DSLR, and Webcam), Digits (MNIST, USPS, SVHN, and MNIST-M) and VisDA (Synthetic, Real).

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.