Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Learning Constrained Adaptive Differentiable Predictive Control Policies With Guarantees (2004.11184v6)

Published 23 Apr 2020 in eess.SY, cs.LG, cs.NE, and cs.SY

Abstract: We present differentiable predictive control (DPC), a method for learning constrained neural control policies for linear systems with probabilistic performance guarantees. We employ automatic differentiation to obtain direct policy gradients by backpropagating the model predictive control (MPC) loss function and constraints penalties through a differentiable closed-loop system dynamics model. We demonstrate that the proposed method can learn parametric constrained control policies to stabilize systems with unstable dynamics, track time-varying references, and satisfy nonlinear state and input constraints. In contrast with imitation learning-based approaches, our method does not depend on a supervisory controller. Most importantly, we demonstrate that, without losing performance, our method is scalable and computationally more efficient than implicit, explicit, and approximate MPC. Under review at IEEE Transactions on Automatic Control.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.