Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Same Side Stance Classification Task: Facilitating Argument Stance Classification by Fine-tuning a BERT Model (2004.11163v1)

Published 23 Apr 2020 in cs.CL and cs.LG

Abstract: Research on computational argumentation is currently being intensively investigated. The goal of this community is to find the best pro and con arguments for a user given topic either to form an opinion for oneself, or to persuade others to adopt a certain standpoint. While existing argument mining methods can find appropriate arguments for a topic, a correct classification into pro and con is not yet reliable. The same side stance classification task provides a dataset of argument pairs classified by whether or not both arguments share the same stance and does not need to distinguish between topic-specific pro and con vocabulary but only the argument similarity within a stance needs to be assessed. The results of our contribution to the task are build on a setup based on the BERT architecture. We fine-tuned a pre-trained BERT model for three epochs and used the first 512 tokens of each argument to predict if two arguments share the same stance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.