Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deterministic Sparse Sublinear FFT with Improved Numerical Stability (2004.11097v2)

Published 23 Apr 2020 in math.NA and cs.NA

Abstract: In this paper we extend the deterministic sublinear FFT algorithm in Plonka et al. (2018) for fast reconstruction of $M$-sparse vectors ${\mathbf x}$ of length $N= 2J$, where we assume that all components of the discrete Fourier transform $\hat{\mathbf x}= {\mathbf F}_{N} {\mathbf x}$ are available. The sparsity of ${\mathbf x}$ needs not to be known a priori, but is determined by the algorithm. If the sparsity $M$ is larger than $2{J/2}$, then the algorithm turns into a usual FFT algorithm with runtime ${\mathcal O}(N \log N)$. For $M{2} < N$, the runtime of the algorithm is ${\mathcal O}(M2 \, \log N)$. The proposed modifications of the approach in Plonka et al. (2018) lead to a significant improvement of the condition numbers of the Vandermonde matrices which are employed in the iterative reconstruction. Our numerical experiments show that our modification has a huge impact on the stability of the algorithm. While the algorithm in Plonka et al. (2018) starts to be unreliable for $M>20$ because of numerical instabilities, the modified algorithm is still numerically stable for $M=200$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube