Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deterministic Sparse Sublinear FFT with Improved Numerical Stability (2004.11097v2)

Published 23 Apr 2020 in math.NA and cs.NA

Abstract: In this paper we extend the deterministic sublinear FFT algorithm in Plonka et al. (2018) for fast reconstruction of $M$-sparse vectors ${\mathbf x}$ of length $N= 2J$, where we assume that all components of the discrete Fourier transform $\hat{\mathbf x}= {\mathbf F}_{N} {\mathbf x}$ are available. The sparsity of ${\mathbf x}$ needs not to be known a priori, but is determined by the algorithm. If the sparsity $M$ is larger than $2{J/2}$, then the algorithm turns into a usual FFT algorithm with runtime ${\mathcal O}(N \log N)$. For $M{2} < N$, the runtime of the algorithm is ${\mathcal O}(M2 \, \log N)$. The proposed modifications of the approach in Plonka et al. (2018) lead to a significant improvement of the condition numbers of the Vandermonde matrices which are employed in the iterative reconstruction. Our numerical experiments show that our modification has a huge impact on the stability of the algorithm. While the algorithm in Plonka et al. (2018) starts to be unreliable for $M>20$ because of numerical instabilities, the modified algorithm is still numerically stable for $M=200$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.