Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Accurate runtime selection of optimal MPI collective algorithms using analytical performance modelling (2004.11062v1)

Published 23 Apr 2020 in cs.DC

Abstract: The performance of collective operations has been a critical issue since the advent of MPI. Many algorithms have been proposed for each MPI collective operation but none of them proved optimal in all situations. Different algorithms demonstrate superior performance depending on the platform, the message size, the number of processes, etc. MPI implementations perform the selection of the collective algorithm empirically, executing a simple runtime decision function. While efficient, this approach does not guarantee the optimal selection. As a more accurate but equally efficient alternative, the use of analytical performance models of collective algorithms for the selection process was proposed and studied. Unfortunately, the previous attempts in this direction have not been successful. We revisit the analytical model-based approach and propose two innovations that significantly improve the selective accuracy of analytical models: (1) We derive analytical models from the code implementing the algorithms rather than from their high-level mathematical definitions. This results in more detailed models. (2) We estimate model parameters separately for each collective algorithm and include the execution of this algorithm in the corresponding communication experiment. We experimentally demonstrate the accuracy and efficiency of our approach using Open MPI broadcast and gather algorithms and a Grid5000 cluster.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.