Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Simple heuristics for efficient parallel tensor contraction and quantum circuit simulation (2004.10892v2)

Published 22 Apr 2020 in quant-ph and cs.DM

Abstract: Tensor networks are the main building blocks in a wide variety of computational sciences, ranging from many-body theory and quantum computing to probability and machine learning. Here we propose a parallel algorithm for the contraction of tensor networks using probabilistic graphical models. Our approach is based on the heuristic solution of the $\mu$-treewidth deletion problem in graph theory. We apply the resulting algorithm to the simulation of random quantum circuits and discuss the extensions for general tensor network contractions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.