Papers
Topics
Authors
Recent
2000 character limit reached

Microscopy Image Restoration using Deep Learning on W2S (2004.10884v1)

Published 22 Apr 2020 in eess.IV and cs.CV

Abstract: We leverage deep learning techniques to jointly denoise and super-resolve biomedical images acquired with fluorescence microscopy. We develop a deep learning algorithm based on the networks and method described in the recent W2S paper to solve a joint denoising and super-resolution problem. Specifically, we address the restoration of SIM images from widefield images. Our TensorFlow model is trained on the W2S dataset of cell images and is made accessible online in this repository: https://github.com/mchatton/w2s-tensorflow. On test images, the model shows a visually-convincing denoising and increases the resolution by a factor of two compared to the input image. For a 512 $\times$ 512 image, the inference takes less than 1 second on a Titan X GPU and about 15 seconds on a common CPU. We further present the results of different variations of losses used in training.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com