Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Agile Autotuning of a Transprecision Tensor Accelerator Overlay for TVM Compiler Stack (2004.10854v1)

Published 20 Apr 2020 in cs.DC, cs.LG, and cs.NE

Abstract: Specialized accelerators for tensor-operations, such as blocked-matrix operations and multi-dimensional convolutions, have been emerged as powerful architecture choices for high-performance Deep-Learning computing. The rapid development of frameworks, models, and precision options challenges the adaptability of such tensor-accelerators since the adaptation to new requirements incurs significant engineering costs. Programmable tensor accelerators offer a promising alternative by allowing reconfiguration of a virtual architecture that overlays on top of the physical FPGA configurable fabric. We propose an overlay ({\tau}-VTA) and an optimization method guided by agile-inspired auto-tuning techniques. We achieve higher performance and faster convergence than state-of-art.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.