Papers
Topics
Authors
Recent
2000 character limit reached

Assessing the Reliability of Visual Explanations of Deep Models with Adversarial Perturbations (2004.10824v1)

Published 22 Apr 2020 in cs.LG and stat.ML

Abstract: The interest in complex deep neural networks for computer vision applications is increasing. This leads to the need for improving the interpretable capabilities of these models. Recent explanation methods present visualizations of the relevance of pixels from input images, thus enabling the direct interpretation of properties of the input that lead to a specific output. These methods produce maps of pixel importance, which are commonly evaluated by visual inspection. This means that the effectiveness of an explanation method is assessed based on human expectation instead of actual feature importance. Thus, in this work we propose an objective measure to evaluate the reliability of explanations of deep models. Specifically, our approach is based on changes in the network's outcome resulting from the perturbation of input images in an adversarial way. We present a comparison between widely-known explanation methods using our proposed approach. Finally, we also propose a straightforward application of our approach to clean relevance maps, creating more interpretable maps without any loss in essential explanation (as per our proposed measure).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.