Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Polarized-VAE: Proximity Based Disentangled Representation Learning for Text Generation (2004.10809v2)

Published 22 Apr 2020 in cs.CL

Abstract: Learning disentangled representations of real-world data is a challenging open problem. Most previous methods have focused on either supervised approaches which use attribute labels or unsupervised approaches that manipulate the factorization in the latent space of models such as the variational autoencoder (VAE) by training with task-specific losses. In this work, we propose polarized-VAE, an approach that disentangles select attributes in the latent space based on proximity measures reflecting the similarity between data points with respect to these attributes. We apply our method to disentangle the semantics and syntax of sentences and carry out transfer experiments. Polarized-VAE outperforms the VAE baseline and is competitive with state-of-the-art approaches, while being more a general framework that is applicable to other attribute disentanglement tasks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.