On certain linearized polynomials with high degree and kernel of small dimension (2004.10650v1)
Abstract: Let $f$ be the $\mathbb{F}q$-linear map over $\mathbb{F}{q{2n}}$ defined by $x\mapsto x+ax{qs}+bx{q{n+s}}$ with $\gcd(n,s)=1$. It is known that the kernel of $f$ has dimension at most $2$, as proved by Csajb\'ok et al. in "A new family of MRD-codes" (2018). For $n$ big enough, e.g. $n\geq5$ when $s=1$, we classify the values of $b/a$ such that the kernel of $f$ has dimension at most $1$. To this aim, we translate the problem into the study of some algebraic curves of small degree with respect to the degree of $f$; this allows to use intersection theory and function field theory together with the Hasse-Weil bound. Our result implies a non-scatteredness result for certain high degree scattered binomials, and the asymptotic classification of a family of rank metric codes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.