Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Keyphrase Prediction With Pre-trained Language Model (2004.10462v1)

Published 22 Apr 2020 in cs.CL

Abstract: Recently, generative methods have been widely used in keyphrase prediction, thanks to their capability to produce both present keyphrases that appear in the source text and absent keyphrases that do not match any source text. However, the absent keyphrases are generated at the cost of the performance on present keyphrase prediction, since previous works mainly use generative models that rely on the copying mechanism and select words step by step. Besides, the extractive model that directly extracts a text span is more suitable for predicting the present keyphrase. Considering the different characteristics of extractive and generative methods, we propose to divide the keyphrase prediction into two subtasks, i.e., present keyphrase extraction (PKE) and absent keyphrase generation (AKG), to fully exploit their respective advantages. On this basis, a joint inference framework is proposed to make the most of BERT in two subtasks. For PKE, we tackle this task as a sequence labeling problem with the pre-trained LLM BERT. For AKG, we introduce a Transformer-based architecture, which fully integrates the present keyphrase knowledge learned from PKE by the fine-tuned BERT. The experimental results show that our approach can achieve state-of-the-art results on both tasks on benchmark datasets.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.