Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DeepFake Detection by Analyzing Convolutional Traces (2004.10448v1)

Published 22 Apr 2020 in cs.CV

Abstract: The Deepfake phenomenon has become very popular nowadays thanks to the possibility to create incredibly realistic images using deep learning tools, based mainly on ad-hoc Generative Adversarial Networks (GAN). In this work we focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method able to detect a forensics trace hidden in images: a sort of fingerprint left in the image generation process. The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process. Ad-hoc validation has been employed through experimental tests with naive classifiers on five different architectures (GDWCT, STARGAN, ATTGAN, STYLEGAN, STYLEGAN2) against the CELEBA dataset as ground-truth for non-fakes. Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.

Citations (186)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.