Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

The iWildCam 2020 Competition Dataset (2004.10340v1)

Published 21 Apr 2020 in cs.CV

Abstract: Camera traps enable the automatic collection of large quantities of image data. Biologists all over the world use camera traps to monitor animal populations. We have recently been making strides towards automatic species classification in camera trap images. However, as we try to expand the geographic scope of these models we are faced with an interesting question: how do we train models that perform well on new (unseen during training) camera trap locations? Can we leverage data from other modalities, such as citizen science data and remote sensing data? In order to tackle this problem, we have prepared a challenge where the training data and test data are from different cameras spread across the globe. For each camera, we provide a series of remote sensing imagery that is tied to the location of the camera. We also provide citizen science imagery from the set of species seen in our data. The challenge is to correctly classify species in the test camera traps.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.