Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic Maintenance of Low-Stretch Probabilistic Tree Embeddings with Applications (2004.10319v2)

Published 21 Apr 2020 in cs.DS

Abstract: We give the first non-trivial fully dynamic probabilistic tree embedding algorithm for weighted graphs undergoing edge insertions and deletions. We obtain a trade-off between amortized update time and expected stretch against an oblivious adversary. At the two extremes of this trade-off, we can maintain a tree of expected stretch $ O (\log4 n) $ with update time $ m{1/2 + o(1)} $ or a tree of expected stretch $ n{o(1)} $ with update time $ n{o(1)} $ (for edge weights polynomial in $ n $). A guarantee of the latter type has so far only been known for maintaining tree embeddings with average (instead of expected) stretch [Chechik/Zhang, SODA '20]. Our main result has direct implications to fully dynamic approximate distance oracles and fully dynamic buy-at-bulk network design. For dynamic distance oracles, our result is the first to break the $ O (\sqrt{m}) $ update-time barrier. For buy-at-bulk network design, a problem which also in the static setting heavily relies on probabilistic tree embeddings, we give the first non-trivial dynamic algorithm. As probabilistic tree embeddings are an important tool in static approximation algorithms, further applications of our result in dynamic approximation algorithms are conceivable. From a technical perspective, we obtain our main result by first designing a decremental algorithm for probabilistic low-diameter decompositions via a careful combination of Bartal's ball-growing approach [FOCS '96] with the pruning framework of Chechik and Zhang [SODA '20]. We then extend this to a fully dynamic algorithm by enriching a well-known 'decremental to fully dynamic' reduction with a new bootstrapping idea to recursively employ a fully dynamic algorithm instead of a static one in this reduction.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.