Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

LineaRE: Simple but Powerful Knowledge Graph Embedding for Link Prediction (2004.10037v2)

Published 21 Apr 2020 in cs.AI and cs.CL

Abstract: The task of link prediction for knowledge graphs is to predict missing relationships between entities. Knowledge graph embedding, which aims to represent entities and relations of a knowledge graph as low dimensional vectors in a continuous vector space, has achieved promising predictive performance. If an embedding model can cover different types of connectivity patterns and mapping properties of relations as many as possible, it will potentially bring more benefits for link prediction tasks. In this paper, we propose a novel embedding model, namely LineaRE, which is capable of modeling four connectivity patterns (i.e., symmetry, antisymmetry, inversion, and composition) and four mapping properties (i.e., one-to-one, one-to-many, many-to-one, and many-to-many) of relations. Specifically, we regard knowledge graph embedding as a simple linear regression task, where a relation is modeled as a linear function of two low-dimensional vector-presented entities with two weight vectors and a bias vector. Since the vectors are defined in a real number space and the scoring function of the model is linear, our model is simple and scalable to large knowledge graphs. Experimental results on multiple widely used real-world datasets show that the proposed LineaRE model significantly outperforms existing state-of-the-art models for link prediction tasks.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)