Papers
Topics
Authors
Recent
2000 character limit reached

Take a NAP: Non-Autoregressive Prediction for Pedestrian Trajectories (2004.09760v1)

Published 21 Apr 2020 in cs.CV

Abstract: Pedestrian trajectory prediction is a challenging task as there are three properties of human movement behaviors which need to be addressed, namely, the social influence from other pedestrians, the scene constraints, and the multimodal (multiroute) nature of predictions. Although existing methods have explored these key properties, the prediction process of these methods is autoregressive. This means they can only predict future locations sequentially. In this paper, we present NAP, a non-autoregressive method for trajectory prediction. Our method comprises specifically designed feature encoders and a latent variable generator to handle the three properties above. It also has a time-agnostic context generator and a time-specific context generator for non-autoregressive prediction. Through extensive experiments that compare NAP against several recent methods, we show that NAP has state-of-the-art trajectory prediction performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.