Papers
Topics
Authors
Recent
2000 character limit reached

AdaX: Adaptive Gradient Descent with Exponential Long Term Memory (2004.09740v2)

Published 21 Apr 2020 in cs.LG and stat.ML

Abstract: Although adaptive optimization algorithms such as Adam show fast convergence in many machine learning tasks, this paper identifies a problem of Adam by analyzing its performance in a simple non-convex synthetic problem, showing that Adam's fast convergence would possibly lead the algorithm to local minimums. To address this problem, we improve Adam by proposing a novel adaptive gradient descent algorithm named AdaX. Unlike Adam that ignores the past gradients, AdaX exponentially accumulates the long-term gradient information in the past during training, to adaptively tune the learning rate. We thoroughly prove the convergence of AdaX in both the convex and non-convex settings. Extensive experiments show that AdaX outperforms Adam in various tasks of computer vision and natural language processing and can catch up with Stochastic Gradient Descent.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.