Papers
Topics
Authors
Recent
2000 character limit reached

Moreau-Yosida regularization for optimal control of fractional PDEs with state constraints: parabolic case (2004.09595v1)

Published 20 Apr 2020 in math.AP, cs.NA, math.NA, and math.OC

Abstract: This paper considers optimal control of fractional parabolic PDEs with both state and control constraints. The key challenge is how to handle the state constraints. Similarly, to the elliptic case, in this paper, we establish several new mathematical tools in the parabolic setting that are of wider interest. For example, existence of solution to the fractional parabolic equation with measure data on the right-hand-side. We employ the Moreau-Yosida regularization to handle the state constraints. We establish convergence, with rate, of the regularized optimal control problem to the original one. Numerical experiments confirm what we have proven theoretically.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.