Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Automated Detection of Microaneurysms in Color Fundus Images using Deep Learning with Different Preprocessing Approaches (2004.09493v1)

Published 18 Apr 2020 in physics.med-ph and eess.IV

Abstract: Imaging methods by using computer techniques provide doctors assistance at any time and relieve their workload, especially for iterative processes like identifying objects of interest such as lesions and anatomical structures from the image. Detection of microaneurysms (MAs) as one of the lesions in the retina is considered to be a crucial step in some retinal image analysis algorithms for the identification of diabetic retinopathy (DR) as the second-largest eye diseases in developed countries. The objective of this study is to compare the effect of two preprocessing methods, Illumination Equalization, and Top-hat transformation, on retinal images to detect MAs using a combination of Matching based approach and deep learning methods either in the normal fundus images or in the presence of DR. The steps for the detection are as following: 1) applying preprocessing, 2) vessel segmentation and masking, and 3) MAs detection using a combination of Matching based approach and deep learning. From the accuracy viewpoint, we compared the method to manual detection performed by ophthalmologists for our big retinal image databases (more than 2200 images). Using first preprocessing method, Illumination equalization and contrast enhancement, the accuracy of MAs detection was about 90% for all databases (one local and two publicly retinal databases). The performance of the MAs detection methods using top-hat preprocessing (the second preprocessing method) was more than 80% for all databases.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.