Papers
Topics
Authors
Recent
2000 character limit reached

Shape-Oriented Convolution Neural Network for Point Cloud Analysis (2004.09411v1)

Published 20 Apr 2020 in cs.CV

Abstract: Point cloud is a principal data structure adopted for 3D geometric information encoding. Unlike other conventional visual data, such as images and videos, these irregular points describe the complex shape features of 3D objects, which makes shape feature learning an essential component of point cloud analysis. To this end, a shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point. Despite this intra-shape relationship learning, ShapeConv is also designed to incorporate the contextual effects from the inter-shape relationship through capturing the long-ranged dependencies between local underlying shapes. This shape-oriented operator is stacked into our hierarchical learning architecture, namely Shape-Oriented Convolutional Neural Network (SOCNN), developed for point cloud analysis. Extensive experiments have been performed to evaluate its significance in the tasks of point cloud classification and part segmentation.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.