Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation (2004.09216v2)

Published 20 Apr 2020 in cs.CV, eess.IV, and q-bio.QM

Abstract: Multiple sclerosis lesion activity segmentation is the task of detecting new and enlarging lesions that appeared between a baseline and a follow-up brain MRI scan. While deep learning methods for single-scan lesion segmentation are common, deep learning approaches for lesion activity have only been proposed recently. Here, a two-path architecture processes two 3D MRI volumes from two time points. In this work, we investigate whether extending this problem to full 4D deep learning using a history of MRI volumes and thus an extended baseline can improve performance. For this purpose, we design a recurrent multi-encoder-decoder architecture for processing 4D data. We find that adding more temporal information is beneficial and our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.