VOC-ReID: Vehicle Re-identification based on Vehicle-Orientation-Camera (2004.09164v2)
Abstract: Vehicle re-identification is a challenging task due to high intra-class variances and small inter-class variances. In this work, we focus on the failure cases caused by similar background and shape. They pose serve bias on similarity, making it easier to neglect fine-grained information. To reduce the bias, we propose an approach named VOC-ReID, taking the triplet vehicle-orientation-camera as a whole and reforming background/shape similarity as camera/orientation re-identification. At first, we train models for vehicle, orientation and camera re-identification respectively. Then we use orientation and camera similarity as penalty to get final similarity. Besides, we propose a high performance baseline boosted by bag of tricks and weakly supervised data augmentation. Our algorithm achieves the second place in vehicle re-identification at the NVIDIA AI City Challenge 2020.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.