Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision (2004.09034v1)

Published 20 Apr 2020 in cs.CV and cs.LG

Abstract: One of the primary challenges limiting the applicability of deep learning is its susceptibility to learning spurious correlations rather than the underlying mechanisms of the task of interest. The resulting failure to generalise cannot be addressed by simply using more data from the same distribution. We propose an auxiliary training objective that improves the generalization capabilities of neural networks by leveraging an overlooked supervisory signal found in existing datasets. We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task. We show that such pairs can be identified in a number of existing datasets in computer vision (visual question answering, multi-label image classification) and natural language processing (sentiment analysis, natural language inference). The new training objective orients the gradient of a model's decision function with pairs of counterfactual examples. Models trained with this technique demonstrate improved performance on out-of-distribution test sets.

Citations (112)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.