Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: A Typical Case (2004.09002v1)

Published 20 Apr 2020 in quant-ph and cs.CC

Abstract: The Quantum Approximate Optimization Algorithm can naturally be applied to combinatorial search problems on graphs. The quantum circuit has p applications of a unitary operator that respects the locality of the graph. On a graph with bounded degree, with p small enough, measurements of distant qubits in the state output by the QAOA give uncorrelated results. We focus on finding big independent sets in random graphs with dn/2 edges keeping d fixed and n large. Using the Overlap Gap Property of almost optimal independent sets in random graphs, and the locality of the QAOA, we are able to show that if p is less than a d-dependent constant times log n, the QAOA cannot do better than finding an independent set of size .854 times the optimal for d large. Because the logarithm is slowly growing, even at one million qubits we can only show that the algorithm is blocked if p is in single digits. At higher p the algorithm "sees" the whole graph and we have no indication that performance is limited.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Edward Farhi (38 papers)
  2. David Gamarnik (70 papers)
  3. Sam Gutmann (12 papers)
Citations (131)

Summary

We haven't generated a summary for this paper yet.