Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions (2004.08867v3)

Published 19 Apr 2020 in cs.LG, cs.NA, math.NA, math.ST, stat.ML, and stat.TH

Abstract: This paper studies the universal approximation property of deep neural networks for representing probability distributions. Given a target distribution $\pi$ and a source distribution $p_z$ both defined on $\mathbb{R}d$, we prove under some assumptions that there exists a deep neural network $g:\mathbb{R}d\rightarrow \mathbb{R}$ with ReLU activation such that the push-forward measure $(\nabla g)_# p_z$ of $p_z$ under the map $\nabla g$ is arbitrarily close to the target measure $\pi$. The closeness are measured by three classes of integral probability metrics between probability distributions: $1$-Wasserstein distance, maximum mean distance (MMD) and kernelized Stein discrepancy (KSD). We prove upper bounds for the size (width and depth) of the deep neural network in terms of the dimension $d$ and the approximation error $\varepsilon$ with respect to the three discrepancies. In particular, the size of neural network can grow exponentially in $d$ when $1$-Wasserstein distance is used as the discrepancy, whereas for both MMD and KSD the size of neural network only depends on $d$ at most polynomially. Our proof relies on convergence estimates of empirical measures under aforementioned discrepancies and semi-discrete optimal transport.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.