Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

When Residual Learning Meets Dense Aggregation: Rethinking the Aggregation of Deep Neural Networks (2004.08796v2)

Published 19 Apr 2020 in cs.CV

Abstract: Various architectures (such as GoogLeNets, ResNets, and DenseNets) have been proposed. However, the existing networks usually suffer from either redundancy of convolutional layers or insufficient utilization of parameters. To handle these challenging issues, we propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations. Specifically, residual learning aims to efficiently retrieve features from different convolutional blocks, while the micro-dense aggregation is able to enhance each block and avoid redundancy of convolutional layers by lessening residual aggregations. Moreover, the proposed micro-dense architecture has two characteristics: pyramidal multi-level feature learning which can widen the deeper layer in a block progressively, and dimension cardinality adaptive convolution which can balance each layer using linearly increasing dimension cardinality. The experimental results over three datasets (i.e., CIFAR-10, CIFAR-100, and ImageNet-1K) demonstrate that the proposed Micro-Dense Net with only 4M parameters can achieve higher classification accuracy than state-of-the-art networks, while being 12.1$\times$ smaller depends on the number of parameters. In addition, our micro-dense block can be integrated with neural architecture search based models to boost their performance, validating the advantage of our architecture. We believe our design and findings will be beneficial to the DNN community.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com